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In the application of the optimized Thomas—-Fermi theory to con-
densed phase systems, it has proved convenient to introduce a sum
of atom-centered functions to represent the most rapidly varying
part of the electron density near the nuclei. By extraction of this
portion of the density, attention can be focused on the more slowly
varying portion, allowing numerical techniques to be employed
without being hindered by a prohibitively high density of grid points.
Dealing with these atom-centered functions is facilitated by the
closed-Torm evaluation of sorme nontrivial integrals. For the casce of
exponential functions, these integrals are evaluated here and spe-
cific methods for their computation are presented. & 1985 Academic
Press, Inc.

1. INTRODUCTION

With the goal of generating electron densities for condensed
phase systems, the opfintized Thomas—Fermi (OTF} theory
f1,2] was derived. The theory is based on a path integral
description of the many-electron system and expresses the elec-
tron density in a way that does not rely on the construction of
a many-electron wave function. The beauty of the theory is
that the computation of an electron densily increases in effort
only linearly with the size of the system, and not with a higher
order dependence as in wave function based theories. Even if
the OTF theory js ill-suited to smaller systems (as it is), it
becomes preferable as the system gets larger. The application
to condensed phase systems is therefore a natural one,

Preliminary calculations have indicated that the OTF theory
provides accurate electron distributions in some simple many-
clectron systems [, 3] Efforts are now under way (o develop
methads for studying condensed phase systems with this
theory, In the process, o number of compuiational  details
must be worked out. One such detail is worked out in
this paper.

The OTF equations can be writlen
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where & is the Fermi energy of the system, v{r} is the effective
one-electron potential, n(z) is the Heaviside function, and j,(z)
is the spherical Bessel function of the first kind of order 1.
Formula (1a) is identical in form to the Thomas—Fermi equation
[4, 5]. The difference here is in the specification of the function,
x(r). In Thomas-Fermi theory, the density depends on the
potential, o (), only at the position under consideration. In OTEF
theory, the densily depends on the potential in a region about
the position under consideration [1]. As a result, OTF theory
does not have the shortcomings of the Thomas—Fermi theory.

The OTF theory is generally applied within the framework
of density functional theory [6}. In this framework, the effective
potential is expressed as

u(r) = ve(r) + (K} + velp, 1), (2)
where the first term on the right-hand side is the externally
applied potential (such as an applied magnetic or electric field),
the second is the Coulomb potential due to both the nuclei and
the averaged electron distribution, and the final term is referred
to as the *‘exchange-correlation potential.”’ In essence, density
functional theory proves that there exists a unique exchange-
correlation potential, v, [p, r|. that depends on the electron
density (not the wave function explicitly), such that solution
of the independent-electron problem with the potential above
pives the correct electron density for the system. Although the
formal definition of the exchange-correlation potential cannot
be applied in practice, a number of useful approximations
exist {7].

One method Tor applying these formulas to condensed phase
systems involves numerical solutiom of the equations. We have
made some effort 1o develop a code to perform caleulations of
this type and have found it convenient to separate the electron
density into two parts, a sum of atom-centered functions plus
a densily deformation:

p(r) = D, pi(r — Ry) + Sp(r) 3)
!

The sum is over all the atoms in the system, appropriately cut
off for condensed phase systems. The functions pf(r) are
known, preferably analytic in form, and are designed to model
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the core portions of the atomic densities. The quantities R,
are the nuclear positions of the atoms. The advantage of this
separation is that the atom-centered functions are expected to
contain the major variations in the density about the nuclei.
This means that the function dp(r) is relatively smooth, making
it easier to handle by numerical means.

An alternate method of applying these formulas is to expand
the density in a bilinear form of atom-centered basis functions,
the coefficients being optimized to give the best agreement
with the OTF equations. This would correspond to a linear
combination of atomic orbitals (LCAQ) approach to solving
the OTF equations. Both this and the numerical methods are
now under investigation.

With the introduction of the atom-centered functions, a sepa-
ration can also be applied to Eq. (1b), one part being associated
with the atom-centered portion of the density and the other
with what is left. Specifically, define ¢%(r) as the Coulomb
potential associated with nucleus J (assumed to be at the origin)
and the atom-centered electron density, p3(r). It is the solution
of the Poisson equation

Vipir) = 4x{Z,8(r) — pi(r)}, (4)

subject to the appropriate boundary conditions. Equation (1a)
can now be written as
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It is desirable to have the atom-centered densities accurately
model the electron distributions near the nuclei, where the
overall density varies most rapidly. When this is true, the major
variations of the right-hand side of Eq. (5) are contained in the
functions 1%(x, r), and the remaining integral should be rela-
tively easy to handle by numerical means. As is often the case
in computational work, the evaluation of an integral is most
easily done if some closed-form expression can be obtained
for at least part of it. This is the goal for the functions in Eq. (6)
using the specific atom-centered densities to be described next.

A convenient choice for the atom-centered densities is a sum
of exponentials. Focusing on a single atom and dropping the
index J for clarity, a typical atom-centered density can be
written as

B,y = @) d>r', (6)
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the constants ¢, and «, being chosen based on some suitable
criteria. If we require that the atom-centered density exactly
screen the nuclear charge, the Coulomb potential associatecd
with it is given by

¢°(r) =

2 _Z O(r .
4me, { f!r d }

_ e’ 4172 (2+a r)
411'80 r a,

(8)

The contribution to the function defined in Eq. (5) is then

41Tc

Pk, n) = r), (9}

where
Gix, o, ry = 2Ji(k, a, 1) + ads(k, @, r)  (10a)
and
Jik,a, )= anf(f’iirf_lzrll) o g3
(10b)
e

These non-trivial integrals are evaluated in this paper.

2. EVALUATION OF J,(k, &, 1)

As expressed above in the first one of Eqgs. (10b), it is possible
to evaluate the integral directly, first evaluating the angular
integrals and then tackling the radial one. However, the integ-
rand that results has an awkward form that depends on whether
ror r' is greater and the indefinite integrals that result are
complicated. The evaluation is made easier after a change in
origin, foltowed by the introduction of an integral representation
for part of the integrand.

Changing the origin of integration to r,

P 2kt —alr+r|
Nk == HiZkr’) et

3.1
27 r'? |r+r’|d .

(1

Assuming that « > 0, as is true here, the following integral
identity is valid:

eiq‘(r-}-r')

e—alr+r| _ 1 ,
Rt a2
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With this identity introduced, the integrations over r' can be
performed, so that Eq. (11} now becomes

_1 e 3
Tk, 0, 1) = 477[[12 a0 da, a3)

where

l1+z
1_

(14)

g(z)ﬁl+%(§-_z)ln

The function g(z) is encountered in the application of the
random phase approximation (RPA) to the degenerate electron
gas [B]. It has singularities at z = *+1, where its denivative
becomes infinite, but otherwise it is a well-behaved function.
To properly deal with this function, it is useful to express it as
the limit of an analytic function,

gl = Lig;gn(z), (15)

where

galzk=1 (16}

+1(1;Z) I [a_—w_)m]
4\z (1—-27+7

The function g,(z) has branch point singularities at the four
points 2,4, =1 +in, z:o =1 —in,z_y = —1 + in, and
z-- = —1 — in. In order to ensure that the function is analytic
along the real axis (along which it is integrated), the branch cuts

are chosen to extend from these points to infinity, in directions
directly away from the real axis (see Fig. 1).

Lz

— .

FIG. 1.
the text.

Branch structure for the function g,(z), defined in Eq. (16) of
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The logarithm in the function g,(z) can be reexpressed as

(1+z)2+n2]= [(2*
l“[(l-z)2+n2 "le-

Defining r., and 8, as the magnitude and argument (or phase)
of the complex number (z — z..) and similarly for the other
three terms, the logarithm can be expressed as

1+27+ 12 o ‘
" li%ﬁ_ﬁgﬁ%] ~ln [%:l Fi(f + 0 _— B 0 )
R

2oz — z--)]. amn

2o )T T Zel)

(18)

The reason for going over this so carefully is that it is necessary
to define the phases appropriately so that the function is strictly
real along the real axis. This requires that the phase of ..,
for instance, be zerc when z is directly below z... That is,
when {z — z.,) = —ix, with x real and positive, 8., = 0.
Proceeding in this way, #,_ is zero when z is directly above
z+— and similarly for the other two terms. It is readily shown
that this choice of phase leads to a real function when z is real.
In addition, this choice of phase leads to a useful expression
when z is pure imaginary in the upper half z-plane, Specifically,

glixy=1+ (i + x) arctan(x), x=0. (19)

This information allows Eq. (13) to be modified to a more
convenient form. After performing the angular integrals and
then noting that g.(z) is even in its argument, we find that

= g8 (q/Zrc) e dy

Tk, o, r) = g ta

2
U’n(} (0)

It is now possible to apply some of the techniques of contour
integration. The function g{z) decays as 2/3z% as the magnitude
of z approaches infinity. Because of the exponential, then, and
the fact that r is always positive, the integral can be closed in
the upper half plane. Taking proper account of the singularity
structure of the integrand, Eq. (20) is replaced by

48:49/2K) dg

71k, . r)g—;;!}_,o{f

2
+ o a0
qg (q/ZK) i g84(q/2K) .
+j e dg +L+ q“razedq’

where the contours are illustrated in Fig. 2.
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Le

FIG. 2. Contours for the integral in Eq. (21). The quantities .. are equal
t0 2KZsx.

The integral over I, is along a closed contour about the root,
g = iw (recall that « is positive), and can be evaluated with
the theorem of residues:

J; q84(9/2k) e dg = ﬁign(ia/QK)e_m

q2 + az

(22)

~ i [1 + (% + %) arc tan(a/ZK}] e,
K

7—0

For the integral over T, note that the integrand differs on
either side of the branch cut only in the logarithmic part of
g,(z). On the left side of the cut, z = (1 + se™*™*), while on
the right side, z = (1 + se™?), with the variable s ranging from
1 to %, The difference in the function g,(z) on the two sides
of the cut is therefore given by

i am Wit — 2is
g,(1 + se™y — g (1 + 573y = — Tk (23)
This leads to
J qg:f(qﬁx) e dg
r, ¢ +af
(= T — 2isye I '
=2 2 ZIKI‘J. (S d
wme 7 —4is? + 8K%s + (4 + o) ;
n.gﬂxr T a2 Citw e—2Kru
~ =T e S [ s 4
0 drr 2 ( 4K2) S = ol 24)
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A similar expression can be derived for the integral over I'_
and there results

Jilk, e, 1} = T [l + (2—K + E—) arc tan(af'Qx)] e
2r o 2k

7sin(rr) | W o?
SRR A+ = 2
! 4ir (1 4K2) (29

dwcr

e—lxm e—2m’n
[l
J’C, w — a4K? . o u? —olldK? “

where C, and C; are portions of the contour illustrated in Fig.
3. Because of the connection between the paths and the closed
contour, the sum of integrals remaining in Eq. (25) can be
replaced by the integral over the entire closed contour minus
those over the portions C, and C; (see Fig. 3). Due to the
exponential in the integrand, the integral over C, vanishes, A
little rearrangement then gives the final result

2 + 2
Hik, o, r)= z 1 — 4K—aarc tan(QKIa)] e
2r 2K
2 At (26)
— Smewr LT ar Fyar, 2Kr)},
2kr 2ra
where
_ [ cosw
Fz(x! Y) = IO W2 + x2 dw. R (27)
[
C
1 1}
C‘v\
o/2K
wC,
i £
CS

FIG. 3. Contour used for the integrations over « in Eq. (25). The portion
C; represents a segment at infinity where the integrand vanishes strongly.
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It is possible to express the function Fy(x, y) in terms of expo-
nential integrals with complex arguments (see Section 4). How-
ever, from a computational viewpoint, the integra! on the right-
hand side of Eq. (27) is more easily handled by numerical
means. Therefore, this function 1s retained in this form.

3. EVALUATION OF J,(x, a, r)

Evaluation of the second of Egs. (10b) can be performed by
simply taking a derivative. In particular,

o
Jx o, r)=— @J](K’ o, r)

= f;—r {*(1 — ar)e ™™ + cos(2kr)
(4= o) +ar(dt + of)
2ra

arctan(Zr/a)e ™™

4K + ot
Lo

ar F\(ar, 2xr)
2ke

4x? — o

+ ——ar Fy(ar, 210‘)}, (28)

2K
where

¥ W sin w

Fitey) = || 25 . (29)

Combining the quantities appropriately gives

2
SICKT) | 4 aryem
Kr

Glrk,a,r) = r{COS(Z r) —

(12« + o) + ar(4k” + o)
2o

arc tan(2x/o)e ™

452 + of
+—-_

ar F(ar, 2kr}
2ro

+ 126% + @
2kox

ar Fyar, 2!(1")}. (&)

4. NUMERICAL EVALUATION OF THE FUNCTIONS

The whole purpose of solving these integrals in closed form
is to provide an efficient means of evaluating these quantities
on the computer. Other than the functions Fi{x, y) and Fy{x, v),
evaluation of G(x, e, r) is straightforward. Since « and o are
always positive, it can be shown that the value of the arctangent
is always between 0 and #/2. There will therefore be no ambigu-
ity about an added multiple of # in the evaluation of this part.

GARY G. HOFFMAN

The evaluation of the remaining funciions will now be con-
sidered.

Before discussing their evaluation in general, it is useful to
mention some limiting cases of the functions F\(x, y) and
Fs(x, ¥). For this purpose, these functions can be expressed in
terms of the better studied exponential integral functions [9]

1
Filx,» = E{e‘ Im{E,{(x + iy)}

+ e~ + Im[E;(—x + iv)])}

1 . 1
Falx,y) = ﬁ{—e‘ Im[E,(x + iy)] @D
+ e~ *(rr + Im[E,(—x + i)}
The exponential integrals are defined by
Ez) = f —dr (Jarg z| < m), (32)

where the path of integration does not cross the negative real
axis or contain the origin, The relations (31) assume that both
x and y are real and positive, From these expressions, the
following limiting forms are obtained:

. T
Filx, y);U Si(y) — 5%

(33a)
Fyx,y) ~ % - (“’;'f" + Si(y)) + %x
Fitey) ~ 5’-’—
— (33b)
+
Faey) ~ % - grn,
Fi(x.y) ~ siny —2y Cos y
_ (33c)
Far.y) ~ 25
Filx,y) ~ = “—E%S—y
yo2
_ (33d)
Falr,y) ~ e+ 202
¥ ¥
Fi(Ax, Ay) ot (y — x arc tan(y/x))A
(33¢)

arc tan{y/x)

Fy(Ax, ~
2(r Ay) ~ F
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¥ cos{Ay)
Fi(Ax, Ay) ~ — =220
A6 T E + )

) (33f)
__ _sin(Ay
Fy(Ax, Ay) TG D) Wy
The sine integral in these expressions is defined by [9]
Si(z) = fﬂgtﬂ—tdr (34)

These relations can be used to find the limiting forms for
the function G(x, «, r). They are

G, ) ~ =T

ey {4 — & + arne™*}«?

Gk, , 1) ~ %(2 + arje™

Clonn = ; (2 +mKr = CoS(2Kr) = M — 2kr Si(ZK"))
a—=0 F 2}(]"

Gk, a.r) ~ % (—4 cos(2kr) + M)
w01 P

Gk, o, r) ~ 2mi arc tan(2x/cx)

=

71242 + a?) sin(2kr)
drr(de’ + a?)

Gk, o, 1) ~

—

(35)

When the values of the arguments are close to any of these
limiting cases, evaluation of G(k, ¢, r) on the computer is best
handled with the explicit formulas given above, Otherwise,
numerical integration of the functions F\(x, y) and F,(x, y) can
be done effectively. Specifically, define the integer quantity
n, = int(y/27). Then

5o 2n - Drtw
S20n— Dr+ wp + 22

27
Fl()c,y)=jD sin w

Jy wzsinwdw
2mm, w? + x7
= 1

d
SRm— AWl

2r
F(x,y)=f cos w
2 ’ (36)
fy cosw
2zn, w? + x?
Breaking up the integral into two parts ensures that the oscilla-
tory part of the integrand is appropriately sampled. The numeri-
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cal integrals are performed accurately using Romberg integra-
tion [10].

Code has been written to evaluate these quantities and tested
for their accuracy and speed. An important concern in the speed
of the calculations is clearly the Romberg integration used in
the evaluation of F,(x, y) and F,{x, y). If too many grid points
are needed for this part of the calculation, a lot of time could
be used. By varying the number of grid points, it was found
that 33 points are sufficient for six-digit accuracy except where
x is small (less than 0.01). In this case, however, the limiting
form given in Eq. (32a) gives satisfactory results. Calculations
on a DEC 3000/400 required 4 X 107* s per evalvation of
Gik, a, r).

5. CONCLUSIONS

The objective of this work is to derive an efficient means of
computing the atom-centered integrals defined in Eq. (6). To
perform OTF calculations on a solid state system, a self-consis-
tent field algorithm is used. In this algorithm, it is necessary
to compute these integrals for each grid point of the unit cell
at each iteration. Hence, the efficiency of this computation is
an important concern.

Code has been written to perform these calculations. Using
a modest grid size for the numerical integration, six-digit accu-
racy is achieved with little computation time.

At present, code is being developed for the application of
the OTF method to solid state systems. An initial application
is the palladium metal crystal. Because of the fundamental
difference between the OTF and Hartree—Fock approximations,
problems peculiar to the OTF approximation have arisen and
are being investigated. Reports of progress in this effort will
be presented at a later stage.
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